- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Richardson, Miles (3)
-
Kaufman, Andrew (2)
-
Wang, Harris H. (2)
-
Ackermann, Gail (1)
-
Al-Moosawi, Lisa (1)
-
Alverdy, John (1)
-
Amato, Katherine R. (1)
-
Amir, Amnon (1)
-
Andras, Jason (1)
-
Angenent, Largus T. (1)
-
Antonopoulos, Dionysios A. (1)
-
Apprill, Amy (1)
-
Armitage, David (1)
-
Ballantine, Kate (1)
-
Baum, Julia K. (1)
-
Bárta, Jirˇí (1)
-
Berg-Lyons, Donna (1)
-
Berry, Allison (1)
-
Bhatnagar, Ashish (1)
-
Bhatnagar, Monica (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pure bacterial cultures remain essential for detailed experimental and mechanistic studies in microbiome research, and traditional methods to isolate individual bacteria from complex microbial ecosystems are labor-intensive, difficult-to-scale and lack phenotype–genotype integration. Here we describe an open-source high-throughput robotic strain isolation platform for the rapid generation of isolates on demand. We develop a machine learning approach that leverages colony morphology and genomic data to maximize the diversity of microbes isolated and enable targeted picking of specific genera. Application of this platform on fecal samples from 20 humans yields personalized gut microbiome biobanks totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial analysis on >100,000 visually captured colonies reveals cogrowth patterns betweenRuminococcaceae,Bacteroidaceae,CoriobacteriaceaeandBifidobacteriaceaefamilies that suggest important microbial interactions. Comparative analysis of 1,197 high-quality genomes from these biobanks shows interesting intra- and interpersonal strain evolution, selection and horizontal gene transfer. This culturomics framework should empower new research efforts to systematize the collection and quantitative analysis of imaging-based phenotypes with high-resolution genomics data for many emerging microbiome studies.more » « less
-
McBee, Ross M.; Lucht, Matt; Mukhitov, Nikita; Richardson, Miles; Srinivasan, Tarun; Meng, Dechuan; Chen, Haorong; Kaufman, Andrew; Reitman, Max; Munck, Christian; et al (, Nature Materials)
-
Thompson, Luke R.; Sanders, Jon G.; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J.; Prill, Robert J.; Tripathi, Anupriya; Gibbons, Sean M.; Ackermann, Gail; et al (, Nature)
An official website of the United States government
